Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Front Immunol ; 15: 1385781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562921

RESUMO

Tissue-resident memory T cells (TRM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, TRM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced TRM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Células T de Memória , Imunoterapia/efeitos adversos , Pele
2.
Front Immunol ; 15: 1343716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605956

RESUMO

Background: Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods: This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results: Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions: These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.


Assuntos
COVID-19 , Resfriado Comum , Humanos , SARS-CoV-2 , Antígeno CTLA-4 , Linfócitos T CD8-Positivos , Células T de Memória , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos , Epitopos
3.
J Med Virol ; 96(5): e29627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659381

RESUMO

The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Interferon gama , Fígado , Macrófagos , Células T de Memória , Células Th1 , Humanos , Antígenos de Superfície da Hepatite B/imunologia , Células Th1/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/tratamento farmacológico , Masculino , Fígado/imunologia , Feminino , Macrófagos/imunologia , Células T de Memória/imunologia , Pessoa de Meia-Idade , Adulto , Antivirais/uso terapêutico , Antivirais/farmacologia , Interferon-alfa , Vírus da Hepatite B/imunologia
4.
J Int Med Res ; 52(3): 3000605241239034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38546260

RESUMO

OBJECTIVES: Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma; it arises from tissue-resident memory T-cells (TRM). In the present study, we investigated potential functional genetic variations that may predispose MF development. METHODS: A case-control study was conducted using whole-exome sequencing, with a focus on genes that are essential to TRM function. RESULTS: We included 21 patients and 19 healthy subjects in the study. Single nucleotide polymorphisms in the following genes were significantly more common in patients than in healthy subjects: GZMB, HLA-DRB1, CD103, and NOTCH1. Moreover, the number of patients carrying single nucleotide polymorphisms in LAG3, NR4A2, and CD26L was significantly greater in the patient group than in the control group. CONCLUSIONS: The presence of genetic variations in one or more TRM functional gene may predispose patients to develop MF. Further studies involving a larger patient population and a comparative analysis of protein expression will be necessary to validate these findings.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Estudos de Casos e Controles , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Células T de Memória , Micose Fungoide/genética , Micose Fungoide/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
5.
Front Immunol ; 15: 1304696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469319

RESUMO

Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.


Assuntos
Leishmaniose Cutânea , Vacinas , Humanos , Linfócitos T CD4-Positivos , Células T de Memória , Eficácia de Vacinas , Biomarcadores
6.
Nat Immunol ; 25(4): 594-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491310
7.
Front Immunol ; 15: 1340645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533494

RESUMO

Background: The emergence of SARS-CoV-2 variants has raised concerns about the sustainability of vaccine-induced immunity. Little is known about the long-term humoral responses and spike-specific T cell memory to Omicron variants, with specific attention to BA.4/5, BQ.1.1, and XBB.1. Methods: We assessed immune responses in 50 uninfected individuals who received varying three-dose vaccination combinations (2X AstraZeneca + 1X Moderna, 1X AstraZeneca + 2X Moderna, and 3X Moderna) against wild-type (WT) and Omicron variants at eight months post-vaccination. The serum antibody titers were analyzed by enzyme-linked immunosorbent assays (ELISA), and neutralizing activities were examined by pseudovirus and infectious SARS-CoV-2 neutralization assays. T cell reactivities and their memory phenotypes were determined by flow cytometry. Results: We found that RBD-specific antibody titers, neutralizing activities, and CD4+ T cell reactivities were reduced against Omicron variants compared to WT. In contrast, CD8+ T cell responses, central memory, effector memory, and CD45RA+ effector memory T cells remained unaffected upon stimulation with the Omicron peptide pool. Notably, CD4+ effector memory T cells even exhibited a higher proportion of reactivity against Omicron variants. Furthermore, participants who received three doses of the Moderna showed a more robust response regarding neutralization and CD8+ T cell reactions than other three-dose vaccination groups. Conclusion: Reduction of humoral and CD4+ T cell responses against Omicron variants in vaccinees suggested that vaccine effectiveness after eight months may not have sufficient protection against the new emerging variants, which provides valuable information for future vaccination strategies such as receiving BA.4/5 or XBB.1-based bivalent vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Células T de Memória , SARS-CoV-2
8.
Curr Opin Virol ; 65: 101397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458064

RESUMO

Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Camundongos , Humanos , Animais , Influenza Humana/prevenção & controle , Linfócitos T CD8-Positivos , Células T de Memória , Memória Imunológica , Pulmão
9.
Microb Pathog ; 190: 106631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537761

RESUMO

The formation of long-lived T-cell memory is a critical goal of vaccines against intracellular pathogens like Mycobacterium tuberculosis (M. tuberculosis). In this study, to access the adjuvant effect of rapamycin on tuberculosis subunit vaccine, we treated mice with rapamycin during the course of vaccination and then monitored the vaccine-specific long-term memory T cell recall responses and protective ability against mycobacterial organisms. Compared with the mice that received vaccine alone, rapamycin treatment enhanced the vaccine induced long-term IFN-γ and IL-2 recall responses, promoted the development of TCM (central memory) like cells and improved the long-term proliferative ability of lymphocytes. Long-duration (total 53 days) of low-dose rapamycin (75 µg/kg/day) treatment generated stronger vaccine-specific memory T cell responses than short-duration treatment (total 25 days). Moreover, rapamycin improved the vaccine's long-term protective efficacy, which resulted in a better reduction of 0.89-log10 CFU of mycobacterial organisms in the lungs compared with control without rapamycin treatment. These findings suggest that rapamycin may be considered in designing TB subunit vaccine regimens or as potential adjuvant to enhance vaccine-induced T cell memory response and to prolong the longevity of vaccine's protective efficacy.


Assuntos
Interferon gama , Mycobacterium tuberculosis , Sirolimo , Vacinas contra a Tuberculose , Tuberculose , Vacinas de Subunidades , Animais , Sirolimo/farmacologia , Camundongos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/efeitos dos fármacos , Vacinas contra a Tuberculose/imunologia , Vacinas de Subunidades/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Interferon gama/metabolismo , Interleucina-2 , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Células T de Memória/imunologia , Células T de Memória/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/imunologia , Memória Imunológica , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Modelos Animais de Doenças , Vacinação
10.
Cancer Immunol Immunother ; 73(5): 90, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554147

RESUMO

Clinically approved head and neck squamous cell carcinoma (HNSCC) immunotherapies manipulate the immune checkpoint blockade (ICB) axis but have had limited success outside of recurrent/metastatic disease. Interleukin-7 (IL7) has been shown to be essential for effector T-cell survival, activation, and proliferation. Here, we show that IL7 in combination with radiotherapy (RT) is effective in activating CD8 + T-cells for reducing tumor growth. Our studies were conducted using both human papillomavirus related and unrelated orthotopic HNSCC murine models. Immune populations from the tumor, draining lymph nodes, and blood were compared between treatment groups and controls using flow cytometry, proteomics, immunofluorescence staining, and RNA sequencing. Treatment with RT and IL7 (RT + IL7) resulted in significant tumor growth reduction, high CD8 T-cell tumor infiltration, and increased proliferation of T-cell progenitors in the bone marrow. IL7 also expanded a memory-like subpopulation of CD8 T-cells. These results indicate that IL7 in combination with RT can serve as an effective immunotherapy strategy outside of the conventional ICB axis to drive the antitumor activity of CD8 T-cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-7 , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Células T de Memória , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
11.
BMC Cancer ; 24(1): 288, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439023

RESUMO

BACKGROUND: Although HPV prophylactic vaccines can provide effective immune protection against high-risk HPV infection, studies have shown that the protective effect provided by them would decrease with the increased age of vaccination, and they are not recommended for those who are not in the appropriate age range for vaccination. Therefore, in those people who are not suitable for HPV prophylactic vaccines, it is worth considering establishing memory T-cell immunity to provide long-term immune surveillance and generate a rapid response against lesional cells to prevent tumorigenesis. METHODS: In this study, healthy mice were preimmunized with LM∆E6E7 and LI∆E6E7, the two Listeria-vectored cervical cancer vaccine candidate strains constructed previously by our laboratory, and then inoculated with tumor cells 40 d later. RESULTS: The results showed that preimmunization with LM∆E6E7 and LI∆E6E7 could establish protective memory T-cell immunity against tumor antigens in mice, which effectively eliminate tumor cells. 60% of mice preimmunized with vaccines did not develop tumors, and for the remaining mice, tumor growth was significantly inhibited. We found that preimmunization with vaccines may exert antitumor effects by promoting the enrichment of T cells at tumor site to exert specific immune responses, as well as inhibiting intratumoral angiogenesis and cell proliferation. CONCLUSION: Altogether, this study suggests that preimmunization with LM∆E6E7 and LI∆E6E7 can establish memory T-cell immunity against tumor antigens in vivo, which provides a viable plan for preventing tumorigenesis and inhibiting tumor progression.


Assuntos
Vacinas Anticâncer , Listeria , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Memória Imunológica , Células T de Memória , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Carcinogênese , Transformação Celular Neoplásica , Neoplasias do Colo do Útero/prevenção & controle , Antígenos de Neoplasias
12.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301652

RESUMO

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Epigênese Genética , Células Clonais , Memória Imunológica , Diferenciação Celular
13.
Proc Natl Acad Sci U S A ; 121(9): e2309153121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386711

RESUMO

The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.


Assuntos
Linfócitos T CD4-Positivos , Células T de Memória , Animais , Camundongos , Memória Imunológica , Memória , Receptores de Interleucina-7 , Transativadores , 60623 , Antígenos de Diferenciação
14.
EBioMedicine ; 101: 105028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422982

RESUMO

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Assuntos
Células T de Memória , Receptores de Antígenos de Linfócitos T , Humanos , Íleo , Aloenxertos , Memória Imunológica , Linfócitos T CD8-Positivos
15.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363548

RESUMO

Radiation exposure occurs during medical procedures, nuclear accidents, or spaceflight, making effective medical countermeasures a public health priority. Naïve T cells are highly sensitive to radiation-induced depletion, although their numbers recover with time. Circulating memory CD8+ T cells are also depleted by radiation; however, their numbers do not recover. Critically, the impact of radiation exposure on tissue-resident memory T cells (TRM) remains unknown. Here, we found that sublethal thorax-targeted radiation resulted in the rapid and prolonged numerical decline of influenza A virus (IAV)-specific lung TRM in mice, but no decline in antigen-matched circulating memory T cells. Prolonged loss of lung TRM was associated with decreased heterosubtypic immunity. Importantly, boosting with IAV-epitope expressing pathogens that replicate in the lungs or peripheral tissues or with a peripherally administered mRNA vaccine regenerated lung TRM that was derived largely from circulating memory CD8+ T cells. Designing effective vaccination strategies to regenerate TRM will be important in combating the immunological effects of radiation exposure.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Exposição à Radiação , Camundongos , Animais , Linfócitos T CD8-Positivos , Células T de Memória , Pulmão , Memória Imunológica
16.
Adv Sci (Weinh) ; 11(16): e2304501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386350

RESUMO

CD8+ T cells are critical for host antitumor responses, whereas persistent antigenic stimulation and excessive inflammatory signals lead to T cell dysfunction or exhaustion. Increasing early memory T cells can improve T cell persistence and empower T cell-mediated tumor eradication, especially for adoptive cancer immunotherapy. Here, it is reported that tumor-associated monocytes (TAMos) are highly correlated with the accumulation of CD8+ memory T cells in human cancers. Further analysis identifies that TAMos selectively reprogram CD8+ T cells into T central memory-like (TCM-like) cells with enhanced recall responses. L-NMMA, a pan nitric oxide synthase inhibitor, can mitigate TAMo-mediated inhibition of T cell proliferation without affecting TCM-like cell generation. Moreover, the modified T cells by TAMo exposure and L-NMMA treatment exhibit long-term persistence and elicit superior antitumor effects in vivo. Mechanistically, the transmembrane protein CD300LG is involved in TAMo-mediated TCM-like cell polarization in a cell-cell contact-dependent manner. Thus, the terminally differentiated TAMo subset (CD300LGhighACElow) mainly contributes to TCM-like cell development. Taken together, these findings establish the significance of TAMos in boosting T-cell antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Monócitos , Linfócitos T CD8-Positivos/imunologia , Camundongos , Animais , Monócitos/imunologia , Humanos , Células T de Memória/imunologia , Memória Imunológica/imunologia , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
17.
J Transl Med ; 22(1): 203, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403590

RESUMO

Resident memory T (Trm) cells which are specifically located in non-lymphoid tissues showed distinct phenotypes and functions compared to circulating memory T cells and were vital for the initiation of robust immune response within tissues. However, the heterogeneity in the transcriptional features, development pathways, and cancer response of Trm cells in the small intestine was not demonstrated. Here, we integrated scRNA-seq and scTCR-seq data pan-tissue T cells to explore the heterogeneity of Trm cells and their development pathways. Trm were enriched in tissue-specific immune response and those in the DUO specially interacted with B cells via TNF and MHC-I signatures. T cell lineage analyses demonstrated that Trm might be derived from the T_CD4/CD8 subset within the same organ or migrated from spleen and mesenteric lymph nodes. We compared the immune repertoire of Trm among organs and implied that clonotypes in both DUO and ILE were less expanded and hydrophilic TRB CDR3s were enriched in the DUO. We further demonstrated that Trm in the intestine infiltrated the colorectal cancer and several effector molecules were highly expressed. Finally, the TCGA dataset of colorectal cancer implied that the infiltration of Trm from the DUO and the ILE was beneficial for overall survival and the response to immune checkpoint blockade.


Assuntos
Neoplasias Colorretais , Memória Imunológica , Humanos , Células T de Memória , Relevância Clínica , Linfócitos T CD8-Positivos , Intestino Delgado , Análise de Célula Única , Neoplasias Colorretais/metabolismo
18.
Clin Rev Allergy Immunol ; 66(1): 64-75, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381299

RESUMO

Tissue-resident memory T (TRM) cells constitute a distinct subset within the memory T cell population, serving as the vanguard against invading pathogens and antigens in peripheral non-lymphoid tissues, including the respiratory tract, intestines, and skin. Notably, TRM cells adapt to the specific microenvironment of each tissue, predominantly maintaining a sessile state with distinctive phenotypic and functional attributes. Their role is to ensure continuous immunological surveillance and protection. Recent findings have highlighted the pivotal contribution of TRM cells to the modulation of adaptive immune responses in allergic disorders such as allergic rhinitis, asthma, and dermatitis. A comprehensive understanding of the involvement of TRM cells in allergic diseases bears profound implications for allergy prevention and treatment. This review comprehensively explores the phenotypic characteristics, developmental mechanisms, and functional roles of TRM cells, focusing on their intricate relationship with allergic diseases.


Assuntos
Hipersensibilidade , Células T de Memória , Humanos , Memória Imunológica , Pele , Linfócitos T CD8-Positivos
19.
Front Immunol ; 15: 1355910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375476

RESUMO

Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Pulmão , Antígenos
20.
Signal Transduct Target Ther ; 9(1): 43, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413575

RESUMO

Memory CD8+ T cell generation is crucial for pathogen elimination and effective vaccination against infection. The cellular and molecular circuitry that underlies the generation of memory CD8+ T cells remains elusive. Eosinophils can modulate inflammatory allergic responses and interact with lymphocytes to regulate their functions in immune defense. Here we report that eosinophils are required for the generation of memory CD8+ T cells by inhibiting CD8+ T cell apoptosis. Eosinophil-deficient mice display significantly impaired memory CD8+ T cell response and weakened resistance against Listeria monocytogenes (L.m.) infection. Mechanistically, eosinophils secrete interleukin-4 (IL-4) to inhibit JNK/Caspase-3 dependent apoptosis of CD8+ T cells upon L.m. infection in vitro. Furthermore, active eosinophils are recruited into the spleen and secrete more IL-4 to suppress CD8+ T cell apoptosis during early stage of L.m. infection in vivo. Adoptive transfer of wild-type (WT) eosinophils but not IL-4-deficient eosinophils into eosinophil-deficient mice could rescue the impaired CD8+ T cell memory responses. Together, our findings suggest that eosinophil-derived IL-4 promotes the generation of CD8+ T cell memory and enhances immune defense against L.m. infection. Our study reveals a new adjuvant role of eosinophils in memory T cell generation and provides clues for enhancing the vaccine potency via targeting eosinophils and related cytokines.


Assuntos
Linfócitos T CD8-Positivos , Listeriose , Camundongos , Animais , Listeriose/genética , Listeriose/microbiologia , Interleucina-4/genética , Eosinófilos , Células T de Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...